Depositphotos
Немецкие ученые из Вюрцбургского университета им. Юлиуса-Максимилиана создали самый маленький в мире светоизлучающий пиксель, что представляет значительное достижение на пути к разработке максимально компактных дисплеев, смарт-очков и других носимых устройств.
До сих пор процесс создания компактных смарт-очков сдерживали громоздкие элементы и оптические ограничения, которые препятствовали эффективному излучению света при уменьшении размеров пикселей до одной длины волны. Исследователи использовали оптические антенны и создали самый маленький из когда-либо созданных светоизлучающих пикселей. Разработку возглавили профессора Йенс Пфлаум и Берт Хехт.
«С помощью металлического контакта, позволяющего инжектировать ток в органический светодиод, одновременно усиливая и излучая генерируемый свет, мы создали пиксель оранжевого цвета на площади всего 300 на 300 нанометров. Этот пиксель по яркости такой же, как и обычный OLED-пиксель размером 5 на 5 микрометров», — отмечает Берт Хехт.
Это означает, что дисплей или проектор с разрешением 1920 x 1080 пикселей легко уместится на площади всего в 1 мм². Это позволит интегрировать подобные крошечные дисплеи в дужки очков, откуда генерируемый свет будет подаваться на линзы.
OLED состоит из нескольких сверхтонких органических слоев, размещенных между двумя электродами. При протекании тока через этот слой электроны и дырки рекомбинируют и возбуждают органические молекулы в активном слое, которые затем высвобождают эту энергию в виде света.
Поскольку каждый пиксель самостоятельно излучает свет, необходимости в подсветке не возникает. Это обеспечивает чрезвычайно глубокий черный и яркие другие цвета, а также эффективное управление энергопотреблением для носимых устройств, а также AR и VR-гарнитур. Ключевой проблемой с дальнейшим уменьшением размеров пикселей стало неравномерное распределение токов в таких малых масштабах.
«Как и в случае с громоотводом, простое уменьшение размера устоявшейся концепции OLED привело бы к тому, что токи стали бы выходить преимущественно из углов антенны. Эта антенна, изготовленная из золота, имела бы форму прямоугольного параллелепипеда с длиной ребра 300х300х50 нанометров. Образующиеся электрические поля будут генерировать настолько мощные токи, что атомы золота, становясь подвижными, постепенно превратятся в оптически активный материал. Эти сверхтонкие структуры будут продолжать расти, пока пиксель не будет уничтожен вследствие короткого замыкания», — объясняет Йенс Пфлаум.
Созданная немецкими исследователями структура содержит специально изготовленный изоляционный слой поверх оптической антенны, который оставляет только круглое отверстие диаметром 200 нанометров в центре. Эта конструкция блокирует токи, которые возникают с краев и углов, обеспечивая длительную и надежную работу светодиода.
На следующих этапах физики планируют еще больше повысить эффективность с нынешнего уровня в один процент и расширить цветовой охват до RGB-спектрального диапазона. Тогда практически ничто не будет препятствовать появлению нового поколения миниатюрных дисплеев.
Результаты исследования опубликованы в журнале Science Advances
Источник: SciTechDaily
Контент сайту призначений для осіб віком від 21 року. Переглядаючи матеріали, ви підтверджуєте свою відповідність віковим обмеженням.
Cуб'єкт у сфері онлайн-медіа; ідентифікатор медіа - R40-06029.